

Windows Benchmark: 3n + 1 Problem
The Collatz Conjecture, also known as 3n + 1, is a mathematical problem that has puzzled mathematicians for years. The conjecture states that if you take any positive integer n, and if n is even, divide it by 2, and if n is odd, multiply it by 3 and add 1, and repeat this process, you will eventually reach the number 1. This benchmark tests the performance of the 3n + 1 problem on the number “837,799” which takes 524 steps to reach 1.
number
math
algorithm
All-Time Rankings
Rank | Language | Average Time | Best Time | Worst Time |
---|---|---|---|---|
1 |
![]() |
0.000µs | 0.000µs | 0.000µs |
2 |
![]() |
1.552µs | 1.400µs | 1.700µs |
3 |
![]() |
2.784µs | 2.600µs | 3.000µs |
4 |
![]() |
3.044µs | 2.800µs | 3.300µs |
5 |
![]() |
3.164µs | 2.700µs | 3.400µs |
6 |
![]() |
3.480µs | 3.100µs | 3.800µs |
7 |
![]() |
3.756µs | 3.200µs | 4.100µs |
8 |
![]() |
4.148µs | 2.700µs | 28.200µs |
9 |
![]() |
4.212µs | 2.900µs | 28.800µs |
10 |
![]() |
25.348µs | 18.100µs | 140.300µs |
11 |
![]() |
70.468µs | 59.200µs | 94.800µs |
12 |
![]() |
121.120µs | 90.500µs | 462.200µs |
13 |
![]() |
170.424µs | 139.400µs | 316.900µs |
14 |
![]() |
174.536µs | 63.700µs | 2,449.400µs |
15 |
![]() |
476.348µs | 189.300µs | 2,308.100µs |
16 |
![]() |
840.224µs | 689.500µs | 1,500.800µs |
17 |
![]() |
7,277.784µs | 47.300µs | 76,791.000µs |
18 |
![]() |
199,195.828µs | 67,300.700µs | 397,693.300µs |