

Windows Benchmark: 3n + 1 Problem
The Collatz Conjecture, also known as 3n + 1, is a mathematical problem that has puzzled mathematicians for years. The conjecture states that if you take any positive integer n, and if n is even, divide it by 2, and if n is odd, multiply it by 3 and add 1, and repeat this process, you will eventually reach the number 1. This benchmark tests the performance of the 3n + 1 problem on the number “837,799” which takes 524 steps to reach 1.
number
math
algorithm
All-Time Rankings
Rank | Language | Average Time | Best Time | Worst Time |
---|---|---|---|---|
1 |
![]() |
0.000µs | 0.000µs | 0.000µs |
2 |
![]() |
2.864µs | 2.500µs | 3.200µs |
3 |
![]() |
3.212µs | 3.000µs | 3.500µs |
4 |
![]() |
3.584µs | 3.300µs | 4.000µs |
5 |
![]() |
3.604µs | 3.300µs | 4.000µs |
6 |
![]() |
4.304µs | 3.600µs | 15.400µs |
7 |
![]() |
4.376µs | 3.300µs | 24.600µs |
8 |
![]() |
4.400µs | 2.900µs | 35.800µs |
9 |
![]() |
19.796µs | 18.600µs | 23.600µs |
10 |
![]() |
72.480µs | 59.100µs | 104.800µs |
11 |
![]() |
72.984µs | 64.600µs | 146.200µs |
12 |
![]() |
101.656µs | 85.800µs | 126.800µs |
13 |
![]() |
149.064µs | 133.500µs | 173.100µs |
14 |
![]() |
424.216µs | 251.600µs | 926.000µs |
15 |
![]() |
957.096µs | 707.300µs | 2,031.000µs |
16 |
![]() |
5,093.800µs | 44.700µs | 96,850.100µs |
17 |
![]() |
141,947.432µs | 46,896.100µs | 312,654.400µs |