

Windows Benchmark: 3n + 1 Problem
The Collatz Conjecture, also known as 3n + 1, is a mathematical problem that has puzzled mathematicians for years. The conjecture states that if you take any positive integer n, and if n is even, divide it by 2, and if n is odd, multiply it by 3 and add 1, and repeat this process, you will eventually reach the number 1. This benchmark tests the performance of the 3n + 1 problem on the number “837,799” which takes 524 steps to reach 1.
number
math
algorithm
All-Time Rankings
Rank | Language | Average Time | Best Time | Worst Time |
---|---|---|---|---|
1 |
![]() |
0.000µs | 0.000µs | 0.000µs |
2 |
![]() |
1.588µs | 1.400µs | 1.700µs |
3 |
![]() |
2.836µs | 2.400µs | 3.000µs |
4 |
![]() |
3.000µs | 2.800µs | 3.200µs |
5 |
![]() |
3.216µs | 2.800µs | 3.400µs |
6 |
![]() |
3.236µs | 3.000µs | 3.500µs |
7 |
![]() |
3.552µs | 3.100µs | 4.000µs |
8 |
![]() |
3.852µs | 3.300µs | 5.400µs |
9 |
![]() |
4.440µs | 3.000µs | 34.500µs |
10 |
![]() |
57.024µs | 18.600µs | 698.900µs |
11 |
![]() |
90.748µs | 59.800µs | 392.000µs |
12 |
![]() |
106.408µs | 93.100µs | 130.700µs |
13 |
![]() |
133.936µs | 63.700µs | 751.200µs |
14 |
![]() |
185.640µs | 149.900µs | 418.500µs |
15 |
![]() |
531.760µs | 200.300µs | 1,542.400µs |
16 |
![]() |
4,529.812µs | 673.800µs | 88,267.900µs |
17 |
![]() |
4,934.356µs | 46.100µs | 121,679.300µs |
18 |
![]() |
179,983.712µs | 65,212.900µs | 691,058.700µs |