

Mac Benchmark: 3n + 1 Problem
The Collatz Conjecture, also known as 3n + 1, is a mathematical problem that has puzzled mathematicians for years. The conjecture states that if you take any positive integer n, and if n is even, divide it by 2, and if n is odd, multiply it by 3 and add 1, and repeat this process, you will eventually reach the number 1. This benchmark tests the performance of the 3n + 1 problem on the number “837,799” which takes 524 steps to reach 1.
number
math
algorithm
All-Time Rankings
Rank | Language | Average Time | Best Time | Worst Time |
---|---|---|---|---|
1 |
![]() |
1.184µs | 1.100µs | 1.600µs |
2 |
![]() |
1.845µs | 1.629µs | 2.830µs |
3 |
![]() |
2.360µs | 2.000µs | 3.000µs |
4 |
![]() |
2.754µs | 2.558µs | 3.361µs |
5 |
![]() |
3.120µs | 3.000µs | 4.000µs |
6 |
![]() |
3.320µs | 3.000µs | 4.000µs |
7 |
![]() |
3.454µs | 2.919µs | 11.903µs |
8 |
![]() |
3.581µs | 2.887µs | 10.625µs |
9 |
![]() |
4.000µs | 2.000µs | 34.000µs |
10 |
![]() |
15.445µs | 14.122µs | 20.012µs |
11 |
![]() |
63.037µs | 53.008µs | 105.268µs |
12 |
![]() |
91.067µs | 78.797µs | 191.000µs |
13 |
![]() |
127.226µs | 110.515µs | 290.673µs |
14 |
![]() |
148.640µs | 122.000µs | 207.000µs |
15 |
![]() |
191.880µs | 53.000µs | 3,395.000µs |
16 |
![]() |
275.309µs | 209.343µs | 511.841µs |
17 |
![]() |
23,444.554µs | 236.123µs | 514,454.536µs |
18 |
![]() |
90,067.378µs | 483.198µs | 1,196,351.159µs |